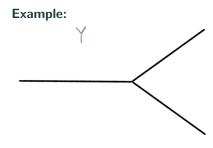
Singular functions in groupoid algebras

York, Semigroup seminar

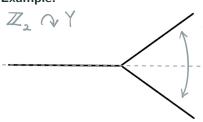
Nóra Szakács Nov 26, 2025

Consider a group G acting on a locally compact, Hausdorff space Y.



Consider a group G acting on a locally compact, Hausdorff space Y.

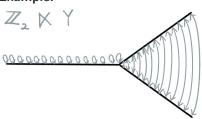
Example:



Consider a group G acting on a locally compact, Hausdorff space Y.

The associated transformation groupoid: $G \ltimes Y$

Example:



Convention: only the non-identity arrows are drawn

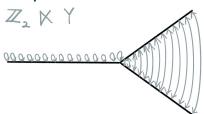
Consider a group G acting on a locally compact, Hausdorff space Y.

The associated transformation groupoid: $G \ltimes Y$

Objects: *Y* Morphisms:

$$\{(g,y):y\in Y,g\in G\}$$

Example:



Convention: only the non-identity arrows are drawn

Consider a group G acting on a locally compact, Hausdorff space Y.

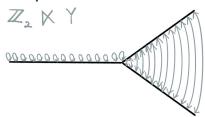
The associated transformation groupoid: $G \ltimes Y$

Objects: *Y* Morphisms:

$$\{(g,y): y \in Y, g \in G\}$$

 $s(g,y) = y, r(g,y) = g(y),$
 $(h,g(y))(g,y) = (hg,y)$

Example:



Convention: only the non-identity arrows are drawn

Consider a group G acting on a locally compact, Hausdorff space Y.

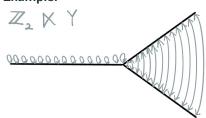
The associated transformation groupoid: $G \ltimes Y$

Objects: *Y*Morphisms:

$$\{(g,y): y \in Y, g \in G\}$$

 $s(g,y) = y, r(g,y) = g(y),$
 $(h,g(y))(g,y) = (hg,y)$
We identify y and $(y,1)$.

Example:



Consider a group G acting on a locally compact, Hausdorff space Y.

The associated transformation groupoid: $G \ltimes Y$

Objects: Y

Morphisms:

$$\{(g,y): y \in Y, g \in G\}$$

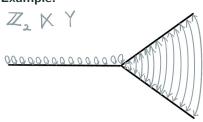
 $s(g,y) = y, r(g,y) = g(y),$
 $(h,g(y))(g,y) = (hg,y)$
We identify y and $(y,1)$.

Topology:

sets of the form $(g, U) = \{(g, y) : y \in U\}$

 $g \in G, U \subseteq Y$ open

Example:



Consider a group G acting on a locally compact, Hausdorff space Y.

The associated transformation groupoid: $G \ltimes Y$

Objects: Y

Morphisms:

$$\{(g,y): y \in Y, g \in G\}$$

 $s(g,y) = y, r(g,y) = g(y),$
 $(h,g(y))(g,y) = (hg,y)$
We identify y and $(y,1)$.

Topology:

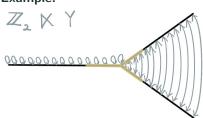
sets of the form

$$(g,U)=\{(g,y):y\in U\}$$

form a basis where

 $g \in G, U \subseteq Y$ open

Example:



Consider a group G acting on a locally compact, Hausdorff space Y.

The associated transformation groupoid: $G \ltimes Y$

Objects: Y

Morphisms:

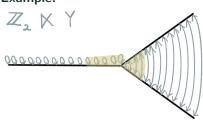
$$\{(g,y): y \in Y, g \in G\}$$

 $s(g,y) = y, r(g,y) = g(y),$
 $(h,g(y))(g,y) = (hg,y)$
We identify y and $(y,1)$.

Topology:

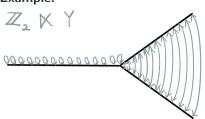
sets of the form $(g, U) = \{(g, y) : y \in U\}$ form a basis where $g \in G, U \subseteq Y$ open

Example:



We quotient $G \ltimes Y$ to obtain: the groupoid of germs

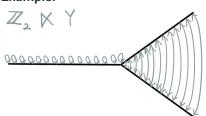
Example:



We quotient $G \ltimes Y$ to obtain: the groupoid of germs

Define $(g, y) \sim (h, y)$ if there exists $U \subseteq Y$ open such that $y \in U$ and $g|_U = h|_U$

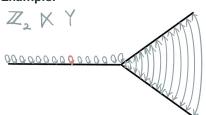
Example:



We quotient $G \ltimes Y$ to obtain: the groupoid of germs

Define $(g, y) \sim (h, y)$ if there exists $U \subseteq Y$ open such that $y \in U$ and $g|_U = h|_U$

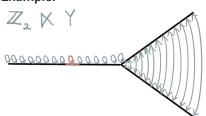
Example:



We quotient $G \ltimes Y$ to obtain: the groupoid of germs

Define $(g, y) \sim (h, y)$ if there exists $U \subseteq Y$ open such that $y \in U$ and $g|_U = h|_U$

Example:

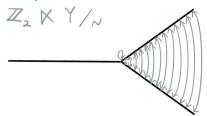


We quotient $G \ltimes Y$ to obtain: the groupoid of germs

Define $(g, y) \sim (h, y)$ if there exists $U \subseteq Y$ open such that $y \in U$ and $g|_{U} = h|_{U}$

 $G \ltimes Y/\sim$ is a topological groupoid with the quotient topology

Example:



We quotient $G \ltimes Y$ to obtain: the groupoid of germs

Define $(g, y) \sim (h, y)$ if there exists $U \subseteq Y$ open such that $y \in U$ and $g|_{U} = h|_{U}$

 $G \ltimes Y/\sim$ is a topological groupoid with the quotient topology

Basis:

$$(g, U) = \{[g, y] : y \in U\}$$
 where $g \in G, U \subseteq Y$ open

Example:



We quotient $G \ltimes Y$ to obtain: the groupoid of germs

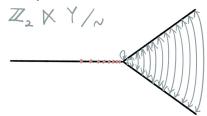
Define $(g, y) \sim (h, y)$ if there exists $U \subseteq Y$ open such that $y \in U$ and $g|_{U} = h|_{U}$

 $G \ltimes Y/\sim$ is a topological groupoid with the quotient topology

Basis:

$$(g, U) = \{[g, y] : y \in U\}$$
 where $g \in G, U \subseteq Y$ open

Example:



We quotient $G \ltimes Y$ to obtain: the groupoid of germs

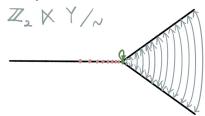
Define $(g, y) \sim (h, y)$ if there exists $U \subseteq Y$ open such that $y \in U$ and $g|_{U} = h|_{U}$

 $G\ltimes Y/\sim$ is a topological groupoid with the quotient topology

Basis:

$$(g, U) = \{[g, y] : y \in U\}$$
 where $g \in G, U \subseteq Y$ open

Example:



We quotient $G \ltimes Y$ to obtain: the groupoid of germs

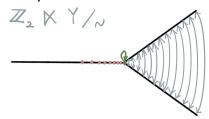
Define $(g, y) \sim (h, y)$ if there exists $U \subseteq Y$ open such that $y \in U$ and $g|_{U} = h|_{U}$

 $G\ltimes Y/\sim$ is a topological groupoid with the quotient topology

Basis:

$$(g, U) = \{[g, y] : y \in U\}$$
 where $g \in G, U \subseteq Y$ open
It is typically *not* a Hausdorff space!

Example:



Suppose we have an inverse semigroup S acting on a (locally compact, Hausdorff) space Y, by homeomorphisms between open subsets.

Suppose we have an inverse semigroup S acting on a (locally compact, Hausdorff) space Y, by homeomorphisms between open subsets.

The "transformation groupoid" $S \ltimes Y$ is now only an inverse semigroupoid: if e, f are different idempotents acting on $y \in Y$, then (e, y), (f, y) are different idempotents in the submonoid of loops at y.

Suppose we have an inverse semigroup S acting on a (locally compact, Hausdorff) space Y, by homeomorphisms between open subsets.

The "transformation groupoid" $S \ltimes Y$ is now only an inverse semigroupoid: if e, f are different idempotents acting on $y \in Y$, then (e, y), (f, y) are different idempotents in the submonoid of loops at y.

But these are identified under germination: if $U=D(e)\cap D(f)$, then $e|_U=f|_U$.

3

Suppose we have an inverse semigroup S acting on a (locally compact, Hausdorff) space Y, by homeomorphisms between open subsets.

The "transformation groupoid" $S \ltimes Y$ is now only an inverse semigroupoid: if e, f are different idempotents acting on $y \in Y$, then (e, y), (f, y) are different idempotents in the submonoid of loops at y.

But these are identified under germination: if $U = D(e) \cap D(f)$, then $e|_{U} = f|_{U}$.

The quotient $S \rtimes Y / \sim$ is still a *groupoid* of germs.

Let $\mathcal G$ be a topological groupoid, i.e. a groupoid with a topology such that source and range maps, and the operations are continuous.

Convention: the identity arrows are identified with the objects and form the unit space $\mathcal{G}^{(0)}$.

Let $\mathcal G$ be a topological groupoid, i.e. a groupoid with a topology such that source and range maps, and the operations are continuous.

Convention: the identity arrows are identified with the objects and form the unit space $\mathcal{G}^{(0)}$.

 $\mathcal G$ is étale if:

ullet $\mathcal{G}^{(0)}$ is a locally compact Hausdorff space

Let $\mathcal G$ be a topological groupoid, i.e. a groupoid with a topology such that source and range maps, and the operations are continuous.

Convention: the identity arrows are identified with the objects and form the unit space $\mathcal{G}^{(0)}$.

 $\mathcal G$ is étale if:

- ullet $\mathcal{G}^{(0)}$ is a locally compact Hausdorff space
- the source (s) and range (r) maps are local homeomorphisms

Let $\mathcal G$ be a topological groupoid, i.e. a groupoid with a topology such that source and range maps, and the operations are continuous.

Convention: the identity arrows are identified with the objects and form the unit space $\mathcal{G}^{(0)}$.

 $\mathcal G$ is étale if:

- ullet $\mathcal{G}^{(0)}$ is a locally compact Hausdorff space
- the source (s) and range (r) maps are local homeomorphisms

 $U \subseteq \mathcal{G}$ is an open bisection if it is open and $s|_U, r|_U$ are homeomorphisms.

Let $\mathcal G$ be a topological groupoid, i.e. a groupoid with a topology such that source and range maps, and the operations are continuous.

Convention: the identity arrows are identified with the objects and form the unit space $\mathcal{G}^{(0)}$.

 $\mathcal G$ is étale if:

- ullet $\mathcal{G}^{(0)}$ is a locally compact Hausdorff space
- it has a basis of open bisections

 $U \subseteq \mathcal{G}$ is an open bisection if it is open and $s|_U, r|_U$ are homeomorphisms.

Let $\mathcal G$ be a topological groupoid, i.e. a groupoid with a topology such that source and range maps, and the operations are continuous.

Convention: the identity arrows are identified with the objects and form the unit space $\mathcal{G}^{(0)}$.

 $\mathcal G$ is étale if:

- ullet $\mathcal{G}^{(0)}$ is a locally compact Hausdorff space
- it has a basis of open bisections

 $U \subseteq \mathcal{G}$ is an open bisection if it is open and $s|_U, r|_U$ are homeomorphisms.

Examples: transformation groupoids, groupoids of germs

Let $\mathcal G$ be a topological groupoid, i.e. a groupoid with a topology such that source and range maps, and the operations are continuous.

Convention: the identity arrows are identified with the objects and form the unit space $\mathcal{G}^{(0)}$.

 \mathcal{G} is ample if:

- ullet $\mathcal{G}^{(0)}$ is a locally compact Hausdorff space
- it has a basis of compact open bisections

 $U \subseteq \mathcal{G}$ is an open bisection if it is open and $s|_U, r|_U$ are homeomorphisms.

Examples: transformation groupoids, groupoids of germs

Let $\mathcal G$ be a topological groupoid, i.e. a groupoid with a topology such that source and range maps, and the operations are continuous.

Convention: the identity arrows are identified with the objects and form the unit space $\mathcal{G}^{(0)}$.

 \mathcal{G} is ample if:

- ullet $\mathcal{G}^{(0)}$ is a locally compact totally disconnected Hausdorff space
- it has a basis of open bisections

 $U \subseteq \mathcal{G}$ is an open bisection if it is open and $s|_U, r|_U$ are homeomorphisms.

Examples: transformation groupoids, groupoids of germs

Given an ample groupoid $\mathcal G,$ its (complex) Steinberg algebra $\mathbb C\mathcal G$ consist of

 $\operatorname{span}\{\chi_U: U \text{ is a compact open bisection}\} \subseteq \ell^\infty(\mathcal{G})$

where $\ell^\infty(\mathcal{G})$ is the vector space of bounded $\mathcal{G} \to \mathbb{C}$ functions.

Given an ample groupoid $\mathcal G$, its (complex) Steinberg algebra $\mathbb C\mathcal G$ consist of

$$\operatorname{span}\{\chi_U: U \text{ is a compact open bisection}\} \subseteq \ell^\infty(\mathcal{G})$$

where $\ell^{\infty}(\mathcal{G})$ is the vector space of bounded $\mathcal{G} \to \mathbb{C}$ functions.

 $\mathbb{C}\mathcal{G}$ is equipped with the convolution product:

$$f * g(\gamma) = \sum_{\gamma = \alpha\beta} f(\alpha)g(\beta).$$

5

Given an ample groupoid $\mathcal G$, its (complex) Steinberg algebra $\mathbb C\mathcal G$ consist of

$$\operatorname{span}\{\chi_U: U \text{ is a compact open bisection}\} \subseteq \ell^\infty(\mathcal{G})$$

where $\ell^{\infty}(\mathcal{G})$ is the vector space of bounded $\mathcal{G} \to \mathbb{C}$ functions.

 $\mathbb{C}\mathcal{G}$ is equipped with the convolution product:

$$f * g(\gamma) = \sum_{\gamma = \alpha\beta} f(\alpha)g(\beta).$$

Example: let $\mathfrak{f} \in \mathbb{C}\mathcal{G}$ and $U \subseteq \mathcal{G}^{(0)}$ compact open.

Then

$$\mathfrak{f} * \chi_U(\gamma) =$$

Given an ample groupoid $\mathcal G$, its (complex) Steinberg algebra $\mathbb C\mathcal G$ consist of

$$\operatorname{span}\{\chi_U: U \text{ is a compact open bisection}\} \subseteq \ell^\infty(\mathcal{G})$$

where $\ell^{\infty}(\mathcal{G})$ is the vector space of bounded $\mathcal{G} \to \mathbb{C}$ functions.

 $\mathbb{C}\mathcal{G}$ is equipped with the convolution product:

$$\mathfrak{f} * \mathfrak{g}(\gamma) = \sum_{\gamma = \alpha\beta} \mathfrak{f}(\alpha)\mathfrak{g}(\beta).$$

Example: let $\mathfrak{f} \in \mathbb{C}\mathcal{G}$ and $U \subseteq \mathcal{G}^{(0)}$ compact open.

Then

$$\mathfrak{f} * \chi_U(\gamma) = \begin{cases} \mathfrak{f}(\gamma) & \text{if } s(\gamma) \in U, \\ 0 & \text{otherwise.} \end{cases}$$

5

Example

If G is a discrete group G, then the compact open bisections are the singletons,

$$\mathbb{C}\mathcal{G}=\operatorname{span}\{\chi_g:g\in\mathcal{G}\}$$

If G is a discrete group G, then the compact open bisections are the singletons,

$$\mathbb{C}\mathcal{G} = \operatorname{span}\{\chi_{g}: g \in G\} \leftrightarrow \mathbb{C}G.$$

6

If G is a discrete group G, then the compact open bisections are the singletons,

$$\mathbb{C}\mathcal{G} = \operatorname{span}\{\chi_g : g \in G\} \leftrightarrow \mathbb{C}G.$$

$$\chi_g * \chi_h(k) = \sum_{k=k_1k_2} \chi_g(k_1)\chi_h(k_2) =$$

If G is a discrete group G, then the compact open bisections are the singletons,

$$\mathbb{C}\mathcal{G} = \operatorname{span}\{\chi_g : g \in G\} \leftrightarrow \mathbb{C}G.$$

$$\chi_g * \chi_h(k) = \sum_{k=k_1 k_2} \chi_g(k_1) \chi_h(k_2) = \begin{cases} 1 & \text{if } k = gh, \\ 0 & \text{otherwise.} \end{cases}$$

6

If G is a discrete group G, then the compact open bisections are the singletons,

$$\mathbb{C}\mathcal{G} = \operatorname{span}\{\chi_g : g \in G\} \leftrightarrow \mathbb{C}G.$$

$$\chi_g * \chi_h(k) = \sum_{k=k_1 k_2} \chi_g(k_1) \chi_h(k_2) = \begin{cases} 1 & \text{if } k = gh, \\ 0 & \text{otherwise.} \end{cases}$$

So
$$\chi_g * \chi_h = \chi_{gh}$$
 and $\mathbb{C}\mathcal{G} \cong \mathbb{C}G$.

If G is a discrete group G, then the compact open bisections are the singletons,

$$\mathbb{C}\mathcal{G} = \operatorname{span}\{\chi_{\mathbf{g}} : \mathbf{g} \in \mathbf{G}\} \leftrightarrow \mathbb{C}\mathbf{G}.$$

$$\chi_g * \chi_h(k) = \sum_{k=k_1 k_2} \chi_g(k_1) \chi_h(k_2) = \begin{cases} 1 & \text{if } k = gh, \\ 0 & \text{otherwise.} \end{cases}$$

So
$$\chi_g * \chi_h = \chi_{gh}$$
 and $\mathbb{C}\mathcal{G} \cong \mathbb{C}G$.

Remark: inverse semigroup algebras are also isomorphic to some $\mathbb{C}\mathcal{G}$ (Steinberg [Adv. Math, 2010]), but here \mathcal{G} is usually not Hausdorff.

Primer on C^* -algebras

We will also associate C^* -algebras to groupoids. But what is a C^* -algebra?

Primer on C^* -algebras

We will also associate C^* -algebras to groupoids. But what is a C^* -algebra?

It is a:

- complex algebra
- with an involutive operation ()* $(ca + b)^* = \overline{c}a^* + b^*$, $(ab)^* = b^*a^*$
- and a complete norm $||\cdot|| ||ab|| \le ||a|| \cdot ||b||$, $||aa^*|| = ||a||^2$

Primer on C^* -algebras

We will also associate C^* -algebras to groupoids. But what is a C^* -algebra?

It is a:

- complex algebra
- with an involutive operation ()* $(ca + b)^* = \overline{c}a^* + b^*$, $(ab)^* = b^*a^*$
- and a complete norm $||\cdot|| ||\mathfrak{a}\mathfrak{b}|| \le ||\mathfrak{a}|| \cdot ||\mathfrak{b}||, ||\mathfrak{a}\mathfrak{a}^*|| = ||\mathfrak{a}||^2$

- 1. full complex matrix algebras
- 2. more generally: bounded linear operators on a Hilbert space: $\mathcal{B}(\mathcal{H})$

Groupoid C*-algebras

The reduced C^* -algebra of an ample groupoid $\mathcal G$ is the completion of $\mathbb C\mathcal G$ in reduced norm.

Groupoid C*-algebras

The reduced C^* -algebra of an ample groupoid \mathcal{G} is the completion of $\mathbb{C}\mathcal{G}$ in reduced norm.

For $x \in \mathcal{G}^{(0)}$, let $\mathcal{G}_x = \{ \gamma \in \mathcal{G} : s(\gamma) = x \}$, and consider the family of representations

$$\lambda_{x} \colon \mathbb{C}\mathcal{G} \to \mathcal{B}(\ell^{2}(\mathcal{G}_{x}))$$
$$\lambda_{x}(\mathfrak{f})(\delta_{\gamma}) = \sum_{\alpha: s(\alpha) = r(\gamma)} \mathfrak{f}(\alpha)\delta_{\alpha\gamma}.$$

We define the reduced norm of \mathfrak{f} as $||\mathfrak{f}|| = \sup_{x \in \mathcal{G}^{(0)}} ||\lambda_x(\mathfrak{f})||$.

The reduced C^* -algebra of \mathcal{G} : $C^*_{red}(\mathcal{G}) := \overline{\mathbb{C}\mathcal{G}}^{||\cdot||}$.

8

Groupoid C*-algebras

The reduced C^* -algebra of an ample groupoid \mathcal{G} is the completion of $\mathbb{C}\mathcal{G}$ in reduced norm.

For $x \in \mathcal{G}^{(0)}$, let $\mathcal{G}_x = \{ \gamma \in \mathcal{G} : s(\gamma) = x \}$, and consider the family of representations

$$\lambda_{x} \colon \mathbb{C}\mathcal{G} \to \mathcal{B}(\ell^{2}(\mathcal{G}_{x}))$$
$$\lambda_{x}(\mathfrak{f})(\delta_{\gamma}) = \sum_{\alpha: s(\alpha) = r(\gamma)} \mathfrak{f}(\alpha)\delta_{\alpha\gamma}.$$

We define the reduced norm of \mathfrak{f} as $||\mathfrak{f}|| = \sup_{x \in \mathcal{G}^{(0)}} ||\lambda_x(\mathfrak{f})||$.

The reduced C^* -algebra of \mathcal{G} : $C^*_{red}(\mathcal{G}) := \overline{\mathbb{C}\mathcal{G}}^{||\cdot||}$.

If $\mathcal G$ is a group or an inverse semigroup, then $C^*_{red}(\mathcal G)$ coincides with the reduced group/inverse semigroup C^* -algebra as usually defined.

More examples

If X is a finite set with |X|=n, there is an ample groupoid \mathcal{G}_n such that $\mathbb{C}\mathcal{G}_n\cong L_\mathbb{C}(1,n) \text{ is the (complex) Leavitt algebra}$ $C^*_{red}(\mathcal{G}_n)\cong \mathcal{O}_n \text{ is the Cuntz algebra}$

More examples

If X is a finite set with |X| = n, there is an ample groupoid G_n such that

$$\mathbb{C}\mathcal{G}_n\cong L_{\mathbb{C}}(1,n)$$
 is the (complex) Leavitt algebra

$$\mathcal{C}^*_{red}(\mathcal{G}_n)\cong \mathcal{O}_n$$
 is the Cuntz algebra

More generally:

If E is a directed graph, there is an ample groupoid \mathcal{G}_E such that

$$\mathbb{C}\mathcal{G}_E\cong L_\mathbb{C}(E)$$
 is the (complex) Leavitt path algebra

$$C^*_{red}(\mathcal{G}_E)\cong C^*(E)$$
 is the graph C*-algebra

9

More examples

If X is a finite set with |X| = n, there is an ample groupoid G_n such that

$$\mathbb{C}\mathcal{G}_n\cong L_\mathbb{C}(1,n)$$
 is the (complex) Leavitt algebra

$$\mathcal{C}^*_{red}(\mathcal{G}_n)\cong \mathcal{O}_n$$
 is the Cuntz algebra

More generally:

If E is a directed graph, there is an ample groupoid \mathcal{G}_E such that

$$\mathbb{C}\mathcal{G}_E\cong L_\mathbb{C}(E)$$
 is the (complex) Leavitt path algebra

$$C^*_{red}(\mathcal{G}_E)\cong C^*(E)$$
 is the graph C*-algebra

Many ring-theoretic properties of the two algebras coincide: simplicity, purely infinite simplicity, primitivity, primeness...

Recall: $C^*_{red}(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}\subseteq \ell^\infty(\mathcal{G})$ in norm.

Recall: $C^*_{red}(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G} \subseteq \ell^{\infty}(\mathcal{G})$ in norm.

Renault's j-map allows us to think of $C^*_{red}(\mathcal{G})$ as $\mathcal{G} \to \mathbb{C}$ functions.

Recall: $C^*_{red}(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G} \subseteq \ell^{\infty}(\mathcal{G})$ in norm.

Renault's *j*-map allows us to think of $C^*_{red}(\mathcal{G})$ as $\mathcal{G} \to \mathbb{C}$ functions.

Theorem (Renault, '80)

There exists an injective linear map $j: C^*_{red}(\mathcal{G}) \to \ell^{\infty}(\mathcal{G})$ such that for any $\mathfrak{a}, \mathfrak{b} \in C^*_{red}(\mathcal{G})$,

- 1. $j|_{\mathbb{C}\mathcal{G}}$ is the identity;
- 2. $j(\mathfrak{ab}) = \mathfrak{a} * \mathfrak{b};$
- 3. $||\mathfrak{a}|| \geq ||j(\mathfrak{a})||_{\infty}$.

Recall: $C^*_{red}(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G} \subseteq \ell^{\infty}(\mathcal{G})$ in norm.

Renault's j-map allows us to think of $C^*_{red}(\mathcal{G})$ as $\mathcal{G} \to \mathbb{C}$ functions.

Theorem (Renault, '80)

There exists an injective linear map $j: C^*_{red}(\mathcal{G}) \to \ell^{\infty}(\mathcal{G})$ such that for any $\mathfrak{a}, \mathfrak{b} \in C^*_{red}(\mathcal{G})$,

- 1. $j|_{\mathbb{C}G}$ is the identity;
- 2. $j(\mathfrak{ab}) = \mathfrak{a} * \mathfrak{b};$
- 3. $||\mathfrak{a}|| \geq ||j(\mathfrak{a})||_{\infty}$.

Note: 3. says that if $\mathfrak{a}_n \xrightarrow{||\cdot||} \mathfrak{a}$, then $j(\mathfrak{a}_n) \xrightarrow{||\cdot||_{\infty}} j(\mathfrak{a})$.

Recall: $C^*_{red}(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G} \subseteq \ell^{\infty}(\mathcal{G})$ in norm.

Renault's *j*-map allows us to think of $C^*_{red}(\mathcal{G})$ as $\mathcal{G} \to \mathbb{C}$ functions.

Theorem (Renault, '80)

There exists an injective linear map $j : C^*_{red}(\mathcal{G}) \to \ell^{\infty}(\mathcal{G})$ such that for any $\mathfrak{a}, \mathfrak{b} \in C^*_{red}(\mathcal{G})$,

- 1. $j|_{\mathbb{C}\mathcal{G}}$ is the identity;
- 2. $j(\mathfrak{ab}) = \mathfrak{a} * \mathfrak{b};$
- 3. $||\mathfrak{a}|| \geq ||j(\mathfrak{a})||_{\infty}$.

Note: 3. says that if $\mathfrak{a}_n \xrightarrow{||\cdot||} \mathfrak{a}$, then $j(\mathfrak{a}_n) \xrightarrow{||\cdot||_{\infty}} j(\mathfrak{a})$. In particular $j(C^*_{red}(\mathcal{G})) \subseteq \overline{\mathbb{C}\mathcal{G}}^{||\cdot||_{\infty}}$.

Recall: $C^*_{red}(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G} \subseteq \ell^{\infty}(\mathcal{G})$ in norm.

Renault's j-map allows us to think of $C^*_{red}(\mathcal{G})$ as $\mathcal{G} \to \mathbb{C}$ functions.

Theorem (Renault, '80)

There exists an injective linear map $j : C^*_{red}(\mathcal{G}) \to \ell^{\infty}(\mathcal{G})$ such that for any $\mathfrak{a}, \mathfrak{b} \in C^*_{red}(\mathcal{G})$,

- 1. $j|_{\mathbb{C}\mathcal{G}}$ is the identity;
- 2. $j(\mathfrak{ab}) = \mathfrak{a} * \mathfrak{b};$
- 3. $||\mathfrak{a}|| \geq ||j(\mathfrak{a})||_{\infty}$.

Note: 3. says that if $\mathfrak{a}_n \xrightarrow{||\cdot||} \mathfrak{a}$, then $j(\mathfrak{a}_n) \xrightarrow{||\cdot||_{\infty}} j(\mathfrak{a})$. In particular $j(C^*_{red}(\mathcal{G})) \subseteq \overline{\mathbb{C}\mathcal{G}}^{||\cdot||_{\infty}}$.

From now on we identify \mathfrak{a} with $j(\mathfrak{a})$ in notation.

When is $\mathbb{C}\mathcal{G}$ simple (as a complex algebra)?

When is $C_{red}^*(\mathcal{G})$ simple (as a C^* -algebra)?

When is $\mathbb{C}\mathcal{G}$ simple (as a complex algebra)?

When is $C_{red}^*(\mathcal{G})$ simple (as a C^* -algebra)?

Hausdorff, second countable case:

Brown-Clark-Farthing-Sims [Semigroup Forum, 2014]

When is
$$\mathbb{C}\mathcal{G}$$
 simple (as a complex algebra)?

When is
$$C_{red}^*(\mathcal{G})$$
 simple (as a C^* -algebra)?

Hausdorff, second countable case:

Brown-Clark-Farthing-Sims [Semigroup Forum, 2014]

 $\iff \mathcal{G}$ is minimal and effective

 $\Longleftarrow \mathcal{G}$ is minimal and effective

 $\Longrightarrow \mathcal{G}$ is minimal, effective when \mathcal{G} is amenable

Minimal: every orbit is dense in the unit space, i.e. for all $x \in \mathcal{G}^{(0)}$, $\mathcal{G} \times \mathcal{G} \cap \mathcal{G}^{(0)}$ is dense in $\mathcal{G}^{(0)}$.

Effective: int $(\{\gamma \in \mathcal{G} : s(\gamma) = r(\gamma)\}) = \mathcal{G}^{(0)}$

When is
$$\mathbb{C}\mathcal{G}$$
 simple (as a complex algebra)?

When is
$$C_{red}^*(\mathcal{G})$$
 simple (as a C^* -algebra)?

Hausdorff, second countable case:

Brown-Clark-Farthing-Sims [Semigroup Forum, 2014]

$$\iff \mathcal{G}$$
 is minimal and effective

$$\Leftarrow$$
 \mathcal{G} is minimal and effective

$$\Longrightarrow \mathcal{G}$$
 is minimal, effective when \mathcal{G} is amenable

Minimal: every orbit is dense in the unit space, i.e. for all $x \in \mathcal{G}^{(0)}$, $\mathcal{G} \times \mathcal{G} \cap \mathcal{G}^{(0)}$ is dense in $\mathcal{G}^{(0)}$.

Effective: int
$$(\{\gamma \in \mathcal{G} : s(\gamma) = r(\gamma)\}) = \mathcal{G}^{(0)}$$

Remark: any groupoid of germs (as we defined it) is effective

When is $\mathbb{C}\mathcal{G}$ simple (as a complex When is $C^*_{red}(\mathcal{G})$ simple (as a algebra)? $C^*\text{-algebra}$?

Non-Hausdorff, second countable case:

 $Clark-Exel-Pardo-Starling-Sims \ [Trans.\ AMS,\ 2019]$

When is $\mathbb{C}\mathcal{G}$ simple (as a complex algebra)?

When is $C^*_{red}(\mathcal{G})$ simple (as a C^* -algebra)?

Non-Hausdorff, second countable case:

Clark-Exel-Pardo-Starling-Sims [Trans. AMS, 2019]

Extended to non-second countable:

Extended to non-second countable:

Steinberg-Sz. [Adv. Math, 2021]

Kwaśniewski-Meyer [Doc. Math, 2021]

When is
$$\mathbb{C}\mathcal{G}$$
 simple (as a complex algebra)?

When is
$$C_{red}^*(\mathcal{G})$$
 simple (as a C^* -algebra)?

Non-Hausdorff, second countable case:

Clark-Exel-Pardo-Starling-Sims [Trans. AMS, 2019]

Extended to non-second countable:

Steinberg-Sz. [Adv. Math, 2021]

$$\iff \mathcal{G}$$
 is minimal, effective, and $J_{alg}=0$

Extended to non-second countable:

Kwaśniewski-Meyer [Doc. Math, 2021]

 $\iff \mathcal{G}$ is minimal, effective, J = 0 $\implies \mathcal{G}$ is minimal, effective and

J=0 when \mathcal{G} is amenable

When is
$$\mathbb{C}\mathcal{G}$$
 simple (as a complex algebra)?

When is
$$C_{red}^*(\mathcal{G})$$
 simple (as a C^* -algebra)?

Non-Hausdorff, second countable case:

Clark-Exel-Pardo-Starling-Sims [Trans. AMS, 2019]

Extended to non-second countable:

Steinberg-Sz. [Adv. Math, 2021]

 $\iff \mathcal{G}$ is minimal, effective, and $J_{al\sigma}=0$

Extended to non-second countable:

Kwaśniewski-Meyer [Doc. Math, 2021]

 $\iff \mathcal{G}$ is minimal, effective, J = 0 $\implies \mathcal{G}$ is minimal, effective and

J=0 when ${\cal G}$ is amenable

Where $J=\{\mathfrak{f}\in C^*_{red}(\mathcal{G}):\mathfrak{f} \text{ vanishes on a dense subset}\}$ is called the $(C^*$ -)singular ideal of $C^*_{red}(\mathcal{G})$.

When is
$$\mathbb{C}\mathcal{G}$$
 simple (as a complex algebra)?

When is
$$C_{red}^*(\mathcal{G})$$
 simple (as a C^* -algebra)?

Non-Hausdorff, second countable case:

Clark-Exel-Pardo-Starling-Sims [Trans. AMS, 2019]

Extended to non-second countable:

Steinberg-Sz. [Adv. Math, 2021]

 $\iff \mathcal{G}$ is minimal, effective, and $J_{alg}=0$

Extended to non-second countable:

Kwaśniewski-Meyer [Doc. Math, 2021]

 $\iff \mathcal{G}$ is minimal, effective, J = 0 $\implies \mathcal{G}$ is minimal, effective and

J=0 when ${\cal G}$ is amenable

Where $J=\{\mathfrak{f}\in C^*_{red}(\mathcal{G}):\mathfrak{f} \text{ vanishes on a dense subset}\}$ is called the $(C^*$ -)singular ideal of $C^*_{red}(\mathcal{G})$.

 $J_{alg} := J \cap \mathbb{C}\mathcal{G}$ is called the (algebraic) singular ideal of $\mathbb{C}\mathcal{G}$.

When is
$$\mathbb{C}\mathcal{G}$$
 simple (as a complex algebra)?

When is
$$C_{red}^*(\mathcal{G})$$
 simple (as a C^* -algebra)?

Non-Hausdorff, second countable case:

Clark-Exel-Pardo-Starling-Sims [Trans. AMS, 2019]

Extended to non-second countable:

Steinberg-Sz. [Adv. Math, 2021]

 $\iff \mathcal{G}$ is minimal, effective, and $J_{\textit{alg}} = 0$

Extended to non-second countable:

Kwaśniewski-Meyer [Doc. Math, 2021]

 $\iff \mathcal{G}$ is minimal, effective, J = 0 $\implies \mathcal{G}$ is minimal, effective and

J=0 when \mathcal{G} is amenable

Where $J=\{\mathfrak{f}\in C^*_{red}(\mathcal{G}):\mathfrak{f} \text{ vanishes on a dense subset}\}$ is called the $(C^*$ -)singular ideal of $C^*_{red}(\mathcal{G})$.

 $J_{alg}:=J\cap \mathbb{C}\mathcal{G}$ is called the (algebraic) singular ideal of $\mathbb{C}\mathcal{G}$.

 $C_{red}^*(\mathcal{G})/J = C_{ess}^*(\mathcal{G})$ is the essential algebra of \mathcal{G} .

Recall:

 $\mathbb{C}\mathcal{G} = \operatorname{span}\{\chi_U : U \text{ is a compact open bisection}\}, \ C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}};$ $J_{alg} = \{\mathfrak{f} \in \mathbb{C}\mathcal{G} : \mathfrak{f} \text{ vanishes on a dense subset}\} \lhd \mathbb{C}\mathcal{G}.$

Recall:

 $\mathbb{C}\mathcal{G} = \text{span}\{\chi_U : U \text{ is a compact open bisection}\}, \ C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}};$

 $\textit{J}_{\textit{alg}} = \{\mathfrak{f} \in \mathbb{C}\mathcal{G} : \mathfrak{f} \text{ vanishes on a dense subset}\} \lhd \mathbb{C}\mathcal{G}.$

Note: $\mathfrak{f} \in J \iff \operatorname{supp} \mathfrak{f} = \{ \gamma \in \mathcal{G} : \mathfrak{f}(\gamma) \neq 0 \}$ contains no open set.

Recall:

 $\mathbb{C}\mathcal{G} = \text{span}\{\chi_U : U \text{ is a compact open bisection}\}, \ C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}};$

 $\textit{J}_{\textit{alg}} = \{\mathfrak{f} \in \mathbb{C}\mathcal{G} : \mathfrak{f} \text{ vanishes on a dense subset}\} \lhd \mathbb{C}\mathcal{G}.$

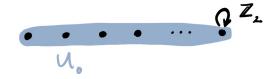
Note: $\mathfrak{f} \in J \iff \operatorname{supp} \mathfrak{f} = \{ \gamma \in \mathcal{G} : \mathfrak{f}(\gamma) \neq 0 \}$ contains no open set.

Recall:

 $\mathbb{C}\mathcal{G} = \operatorname{span}\{\chi_U : U \text{ is a compact open bisection}\}, \ C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}};$

 $\textit{J}_{\textit{alg}} = \{\mathfrak{f} \in \mathbb{C}\mathcal{G} : \mathfrak{f} \text{ vanishes on a dense subset}\} \lhd \mathbb{C}\mathcal{G}.$

Note: $\mathfrak{f} \in J \iff \operatorname{supp} \mathfrak{f} = \{ \gamma \in \mathcal{G} : \mathfrak{f}(\gamma) \neq 0 \}$ contains no open set.

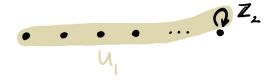


Recall:

 $\mathbb{C}\mathcal{G} = \operatorname{span}\{\chi_U : U \text{ is a compact open bisection}\}, \ C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}};$

 $\textit{J}_{\textit{alg}} = \{\mathfrak{f} \in \mathbb{C}\mathcal{G} : \mathfrak{f} \text{ vanishes on a dense subset}\} \lhd \mathbb{C}\mathcal{G}.$

Note: $\mathfrak{f} \in J \iff \operatorname{supp} \mathfrak{f} = \{ \gamma \in \mathcal{G} : \mathfrak{f}(\gamma) \neq 0 \}$ contains no open set.

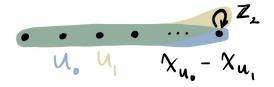


Recall:

 $\mathbb{C}\mathcal{G} = \operatorname{span}\{\chi_U : U \text{ is a compact open bisection}\}, \ C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}};$

 $\textit{J}_{\textit{alg}} = \{\mathfrak{f} \in \mathbb{C}\mathcal{G} : \mathfrak{f} \text{ vanishes on a dense subset}\} \lhd \mathbb{C}\mathcal{G}.$

Note: $\mathfrak{f} \in J \iff \operatorname{supp} \mathfrak{f} = \{ \gamma \in \mathcal{G} : \mathfrak{f}(\gamma) \neq 0 \}$ contains no open set.



The singular ideal

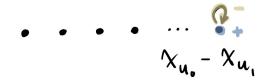
Recall:

 $\mathbb{C}\mathcal{G} = \operatorname{span}\{\chi_U : U \text{ is a compact open bisection}\}, \ C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}};$

 $\textit{J}_{\textit{alg}} = \{\mathfrak{f} \in \mathbb{C}\mathcal{G} : \mathfrak{f} \text{ vanishes on a dense subset}\} \lhd \mathbb{C}\mathcal{G}.$

Note: $\mathfrak{f} \in J \iff \operatorname{supp} \mathfrak{f} = \{ \gamma \in \mathcal{G} : \mathfrak{f}(\gamma) \neq 0 \}$ contains no open set.

Example:



The singular ideal

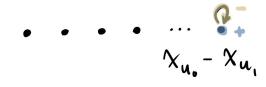
Recall:

 $\mathbb{C}\mathcal{G} = \operatorname{span}\{\chi_U : U \text{ is a compact open bisection}\}, \ C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}};$

 $\textit{J}_{\textit{alg}} = \{\mathfrak{f} \in \mathbb{C}\mathcal{G} : \mathfrak{f} \text{ vanishes on a dense subset}\} \lhd \mathbb{C}\mathcal{G}.$

Note: $\mathfrak{f} \in J \iff \operatorname{supp} \mathfrak{f} = \{ \gamma \in \mathcal{G} : \mathfrak{f}(\gamma) \neq 0 \}$ contains no open set.

Example:



$$\chi_{U_0} - \chi_{U_1} \in J_{alg}$$

In Clark-Exel-Pardo-Starling-Sims [Trans. AMS, 2019], it is open question whether $J\neq 0$ can happen in minimal and effective groupoids.

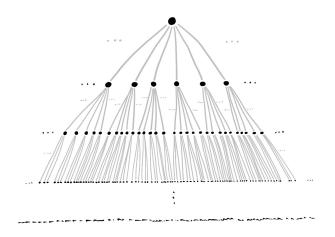
In Clark-Exel-Pardo-Starling-Sims [Trans. AMS, 2019], it is open question whether $J \neq 0$ can happen in minimal and effective groupoids.

In fact Nekrashevych had already been aware of such an example (coming from the Grigorchuk-Erschler self-similar group).

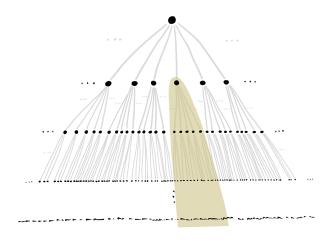
In Clark-Exel-Pardo-Starling-Sims [Trans. AMS, 2019], it is open question whether $J \neq 0$ can happen in minimal and effective groupoids.

In fact Nekrashevych had already been aware of such an example (coming from the Grigorchuk-Erschler self-similar group).

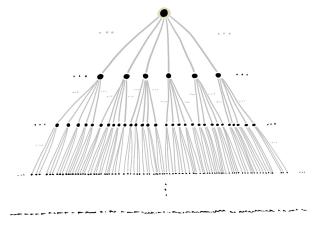
We present an easier-to-explain example with similar behaviour.



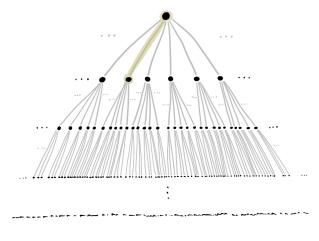
 $\mathcal{G}^{(0)}$: black dots above (in bijection with finite and infinite rays in the tree)



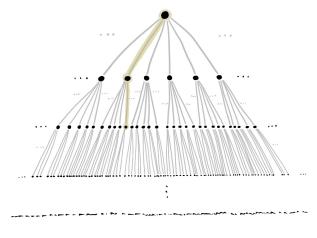
Topology on $\mathcal{G}^{(0)} \colon$ generated by the clopen 'cones'



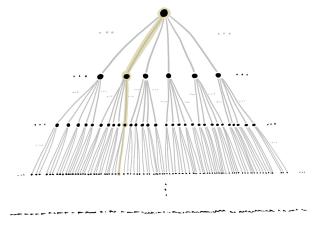
Convergence in $\mathcal{G}^{(0)}$:



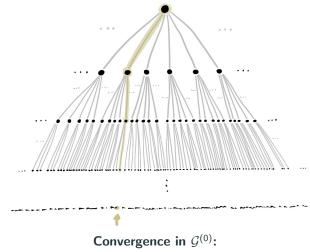
Convergence in $\mathcal{G}^{(0)}$:



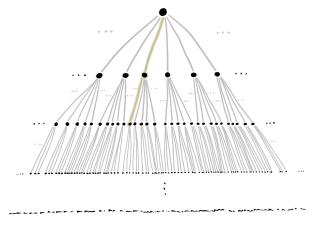
Convergence in $\mathcal{G}^{(0)}$:



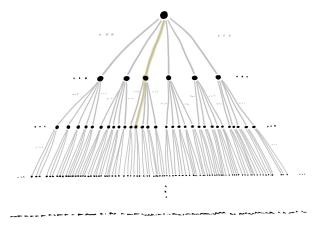
Convergence in $\mathcal{G}^{(0)}$:



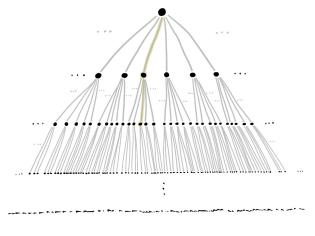
infinite rays are approximated by their finite prefixes



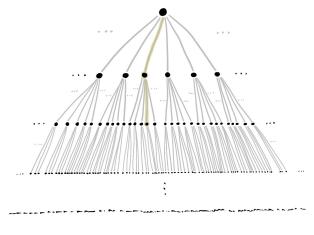
Convergence in $\mathcal{G}^{(0)}$:



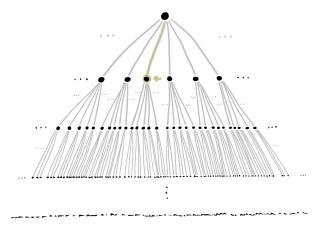
Convergence in $\mathcal{G}^{(0)}$:



Convergence in $\mathcal{G}^{(0)}$:

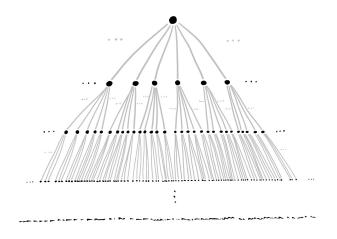


Convergence in $\mathcal{G}^{(0)}$:

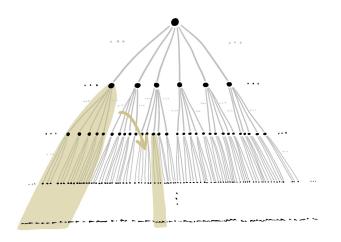


Convergence in $\mathcal{G}^{(0)}$:

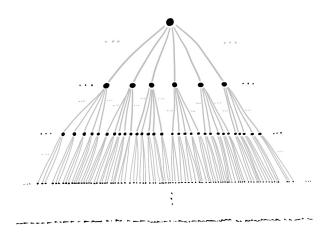
finite rays are approximated by rays with that common prefix



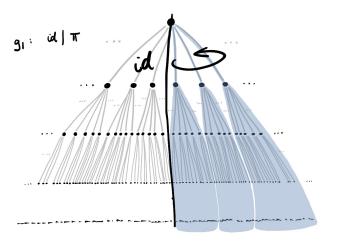
 ${\cal G}$ is a groupoid of germs of an inverse semigroup. The action:



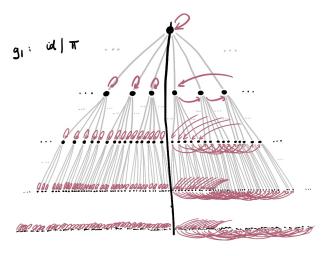
 ${\cal G}$ is a groupoid of germs of an inverse semigroup. The action: 'prefix exchange' maps – these ensure minimality



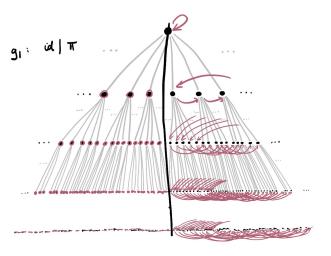
 ${\cal G}$ is a groupoid of germs of an inverse semigroup. The action: additional 'group' maps create a singular function



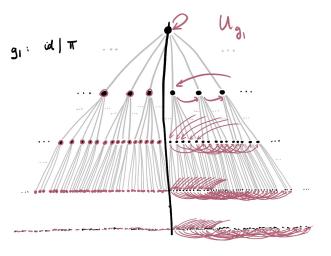
 ${\cal G}$ is a groupoid of germs of an inverse semigroup. The action: the action of g_1



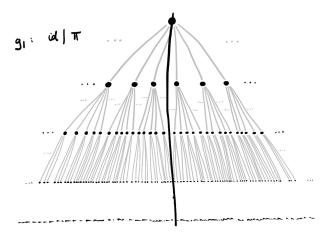
 ${\cal G}$ is a groupoid of germs of an inverse semigroup. The action: the g_1 -arrows in the transformation groupoid



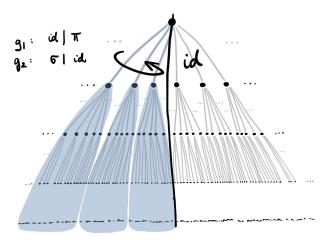
 ${\cal G}$ is a groupoid of germs of an inverse semigroup. The action: the germs of the g_1 -arrows



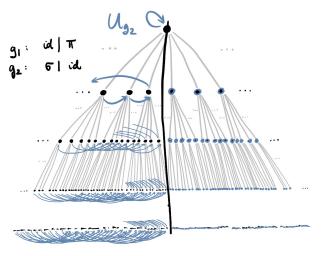
 ${\cal G}$ is a groupoid of germs of an inverse semigroup. The action: these form the compact open bisection ${\cal U}_{g_1}$



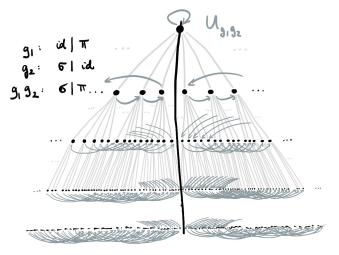
 $\ensuremath{\mathcal{G}}$ is a groupoid of germs of an inverse semigroup. The action:



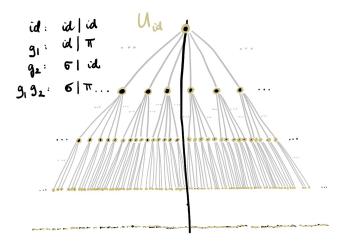
 ${\cal G}$ is a groupoid of germs of an inverse semigroup. The action: the action of g_2



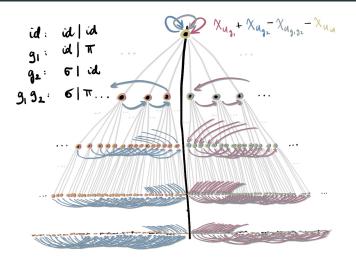
 ${\cal G}$ is a groupoid of germs of an inverse semigroup. The action: we similarly obtain the compact open bisection U_{g_2}



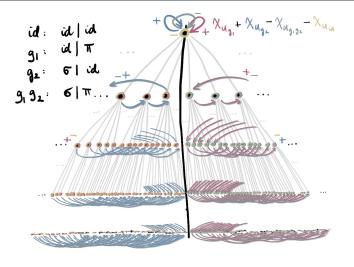
 ${\cal G}$ is a groupoid of germs of an inverse semigroup. The action: the product g_1g_2 gives $U_{g_1g_2}$



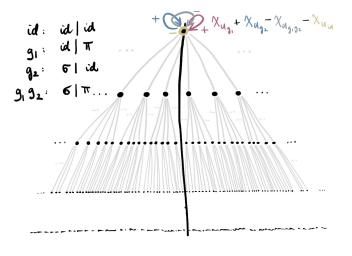
 \mathcal{G} is a groupoid of germs of an inverse semigroup. The action: $\mathcal{G}^{(0)}$ itself is a compact open bisection U_{id}



Consider the function
$$\chi_{\textit{U}_{\textit{g}_1}} + \chi_{\textit{U}_{\textit{g}_2}} - \chi_{\textit{U}_{\textit{g}_1\textit{g}_2}} - \chi_{\textit{U}_{\text{id}}}$$



Consider the function
$$\chi_{\textit{U}_{\textit{g}_1}} + \chi_{\textit{U}_{\textit{g}_2}} - \chi_{\textit{U}_{\textit{g}_1\textit{g}_2}} - \chi_{\textit{U}_{\text{id}}}$$



Consider the function $\chi_{U_{\mathbf{g}_1}} + \chi_{U_{\mathbf{g}_2}} - \chi_{U_{\mathbf{g}_1\mathbf{g}_2}} - \chi_{U_{\mathbf{id}}} \in J_{\mathit{alg}}$

Simplicity

When is
$$\mathbb{C}\mathcal{G}$$
 simple (as a complex algebra)?

When is
$$C_{red}^*(\mathcal{G})$$
 simple (as a C^* -algebra)?

Non-Hausdorff, second countable case:

Clark-Exel-Pardo-Starling-Sims [Trans. AMS, 2019]

$$\iff \mathcal{G}$$
 is minimal, effective, and $J_{alg}(\mathcal{G}) = 0$

$$\iff \mathcal{G}$$
 is minimal, effective, $J=0$
 $\implies \mathcal{G}$ is minimal, effective and
 $J=0$ when \mathcal{G} is amenable

Where $J = \{ \mathfrak{f} \in C^*_{red}(\mathcal{G}) : \mathfrak{f} \text{ vanishes on a dense subset} \}$ is called the $(C^*$ -)singular ideal of $C^*_{red}(\mathcal{G})$.

 $J_{alg}:=J\cap \mathbb{C}\mathcal{G}$ is called the (algebraic) singular ideal of $\mathbb{C}\mathcal{G}$.

Simplicity

When is
$$\mathbb{C}\mathcal{G}$$
 simple (as a complex algebra)?

When is
$$C^*_{red}(\mathcal{G})$$
 simple (as a C^* -algebra)?

Non-Hausdorff, second countable case:

Clark-Exel-Pardo-Starling-Sims [Trans. AMS, 2019]

$$\iff \mathcal{G}$$
 is minimal, effective, and $J_{alg}(\mathcal{G}) = 0$

$$\iff \mathcal{G}$$
 is minimal, effective, $J=0$
 $\implies \mathcal{G}$ is minimal, effective and
 $J=0$ when \mathcal{G} is amenable

Where $J = \{ \mathfrak{f} \in C^*_{red}(\mathcal{G}) : \mathfrak{f} \text{ vanishes on a dense subset} \}$ is called the $(C^*$ -)singular ideal of $C^*_{red}(\mathcal{G})$.

 $J_{alg} := J \cap \mathbb{C}\mathcal{G}$ is called the (algebraic) singular ideal of $\mathbb{C}\mathcal{G}$.

It is natural to ask:

Question 1: Does $J_{alg} = 0$ imply J = 0?

Question 2: Is J_{alg} dense in J?

Progress

Question 1: Does $J_{alg} = 0$ imply J = 0?

Progress

Question 1: Does $J_{alg} = 0$ imply J = 0?

The question is still open but there are positive results:

Question 1: Does $J_{alg} = 0$ imply J = 0?

The question is still open but there are positive results:

ullet Gardella-Nekrashevych-Steinberg-Vdovina [J. Math. Phys, 2025]: Yes if ${\cal G}$ comes from a contracting self-similar group action

Question 1: Does $J_{alg} = 0$ imply J = 0?

The question is still open but there are positive results:

- Gardella-Nekrashevych-Steinberg-Vdovina [J. Math. Phys, 2025]: Yes if ${\cal G}$ comes from a contracting self-similar group action
- \bullet Brix-Gonzales-Hume-Li [preprint, 2025]: Yes if every net in ${\cal G}$ has finitely many limits

Question 1: Does $J_{alg} = 0$ imply J = 0?

The question is still open but there are positive results:

- ullet Gardella-Nekrashevych-Steinberg-Vdovina [J. Math. Phys, 2025]: Yes if ${\cal G}$ comes from a contracting self-similar group action
- ullet Brix-Gonzales-Hume-Li [preprint, 2025]: Yes if every net in ${\cal G}$ has finitely many limits (in particular, if ${\cal G}$ comes from a contracting self-similar group action)

Question 1: Does $J_{alg} = 0$ imply J = 0?

The question is still open but there are positive results:

- Gardella-Nekrashevych-Steinberg-Vdovina [J. Math. Phys, 2025]: Yes if ${\cal G}$ comes from a contracting self-similar group action
- Brix-Gonzales-Hume-Li [preprint, 2025]: Yes if every net in $\mathcal G$ has finitely many limits (in particular, if $\mathcal G$ comes from a contracting self-similar group action)
- Hume [preprint, 2025] obtains further sufficient conditions on the subgroups of G, satisfied by e.g. all virtually solvable groups

Question 1: Does $J_{alg} = 0$ imply J = 0?

The question is still open but there are positive results:

- Gardella-Nekrashevych-Steinberg-Vdovina [J. Math. Phys, 2025]: Yes if ${\cal G}$ comes from a contracting self-similar group action
- Brix-Gonzales-Hume-Li [preprint, 2025]: Yes if every net in $\mathcal G$ has finitely many limits (in particular, if $\mathcal G$ comes from a contracting self-similar group action)
- Hume [preprint, 2025] obtains further sufficient conditions on the subgroups of G, satisfied by e.g. all virtually solvable groups

Question 2: Is J_{alg} dense in J?

Question 1: Does $J_{alg} = 0$ imply J = 0?

The question is still open but there are positive results:

- Gardella-Nekrashevych-Steinberg-Vdovina [J. Math. Phys, 2025]: Yes if ${\cal G}$ comes from a contracting self-similar group action
- Brix-Gonzales-Hume-Li [preprint, 2025]: Yes if every net in $\mathcal G$ has finitely many limits (in particular, if $\mathcal G$ comes from a contracting self-similar group action)
- Hume [preprint, 2025] obtains further sufficient conditions on the subgroups of G, satisfied by e.g. all virtually solvable groups

Question 2: Is J_{alg} dense in J?

ullet Gonzales-Hume [preprint, 2025]: Yes if every net in ${\cal G}$ has finitely many limits

Question 1: Does $J_{alg} = 0$ imply J = 0?

The question is still open but there are positive results:

- Gardella-Nekrashevych-Steinberg-Vdovina [J. Math. Phys, 2025]: Yes if ${\cal G}$ comes from a contracting self-similar group action
- Brix-Gonzales-Hume-Li [preprint, 2025]: Yes if every net in $\mathcal G$ has finitely many limits (in particular, if $\mathcal G$ comes from a contracting self-similar group action)
- Hume [preprint, 2025] obtains further sufficient conditions on the subgroups of \mathcal{G} , satisfied by e.g. all virtually solvable groups

Question 2: Is J_{alg} dense in J?

• Gonzales-Hume [preprint, 2025]: Yes if every net in $\mathcal G$ has finitely many limits, or if all subgroups of $\mathcal G$ are abelian

Question 1: Does $J_{alg} = 0$ imply J = 0?

The question is still open but there are positive results:

- Gardella-Nekrashevych-Steinberg-Vdovina [J. Math. Phys, 2025]: Yes if $\mathcal G$ comes from a contracting self-similar group action
- Brix-Gonzales-Hume-Li [preprint, 2025]: Yes if every net in $\mathcal G$ has finitely many limits (in particular, if $\mathcal G$ comes from a contracting self-similar group action)
- Hume [preprint, 2025] obtains further sufficient conditions on the subgroups of G, satisfied by e.g. all virtually solvable groups

Question 2: Is J_{alg} dense in J?

ullet Gonzales-Hume [preprint, 2025]: Yes if every net in ${\cal G}$ has finitely many limits, or if all subgroups of ${\cal G}$ are abelian

But in general, the answer is NO, in fact there are even minimal and effective counterexamples (Martínez, Sz., [preprint, 2025]).

Recall:

- $J_{alg} \triangleleft \mathbb{C}\mathcal{G} = \text{span}\{\chi_U : U \text{ is a compact open bisection}\};$
- $J \triangleleft C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}} \subseteq \overline{\mathbb{C}\mathcal{G}}^{\infty}$;
- ullet $\mathfrak{f}\in J\iff \operatorname{supp}\mathfrak{f}$ contains no open set, $J_{\mathit{alg}}=J\cap\mathbb{C}$

Recall:

- $J_{alg} \triangleleft \mathbb{C}\mathcal{G} = \text{span}\{\chi_U : U \text{ is a compact open bisection}\};$
- $J \triangleleft C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}} \subseteq \overline{\mathbb{C}\mathcal{G}}^{\infty}$;
- $\mathfrak{f} \in J \iff \operatorname{supp} \mathfrak{f}$ contains no open set, $J_{alg} = J \cap \mathbb{C}$

We construct a groupoid \mathcal{G} where $\overline{J_{alg}} \subsetneq J$. Specifically, \mathcal{G} will have:

Recall:

- $J_{alg} \triangleleft \mathbb{C}\mathcal{G} = \text{span}\{\chi_U : U \text{ is a compact open bisection}\};$
- $J \triangleleft C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}} \subseteq \overline{\mathbb{C}\mathcal{G}}^{\infty}$;
- $\mathfrak{f} \in J \iff \operatorname{supp} \mathfrak{f}$ contains no open set, $J_{alg} = J \cap \mathbb{C}$

We construct a groupoid $\mathcal G$ where $\overline{J_{alg}}\subsetneq J$. Specifically, $\mathcal G$ will have:

ullet an open, but non-compact set $B \in \mathcal{G}^{(0)}$ such that $\chi_B \in C^*_{red}(\mathcal{G})$

Recall:

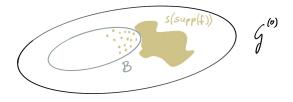
an open, but

- $J_{alg} \triangleleft \mathbb{C}\mathcal{G} = \text{span}\{\chi_U : U \text{ is a compact open bisection}\};$
- $J \triangleleft C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}} \subseteq \overline{\mathbb{C}\mathcal{G}}^{\infty}$;
- $\mathfrak{f} \in J \iff \operatorname{supp} \mathfrak{f}$ contains no open set, $J_{\mathit{alg}} = J \cap \mathbb{C}$

We construct a groupoid $\mathcal G$ where $\overline{J_{alg}}\subsetneq J.$ Specifically, $\mathcal G$ will have:

non-compact set $B \in \mathcal{G}^{(0)} \text{ such that }$ $\chi_B \in C^*_{red}(\mathcal{G})$ • a function $\mathfrak{f} \in \mathbb{C}\mathcal{G}$ such that $\mathfrak{f} * \chi_B = \mathfrak{f}|_{\mathcal{G}_B}$ is singular, but \mathfrak{f} has large

support outside G_R

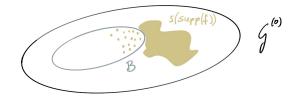


Recall:

- $J_{alg} \triangleleft \mathbb{C}\mathcal{G} = \text{span}\{\chi_U : U \text{ is a compact open bisection}\};$
- $J \triangleleft C^*_{red}(\mathcal{G}) = \overline{\mathbb{C}\mathcal{G}} \subseteq \overline{\mathbb{C}\mathcal{G}}^{\infty}$;
- $\mathfrak{f} \in J \iff \operatorname{supp} \mathfrak{f}$ contains no open set, $J_{alg} = J \cap \mathbb{C}$

We construct a groupoid $\mathcal G$ where $\overline{J_{alg}}\subsetneq J$. Specifically, $\mathcal G$ will have:

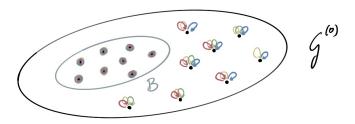
- ullet an open, but non-compact set $B \in \mathcal{G}^{(0)}$ such that $\chi_B \in \mathcal{C}^*_{red}(\mathcal{G})$
- a function $\mathfrak{f} \in \mathbb{C}\mathcal{G}$ such that $\mathfrak{f} * \chi_B = \mathfrak{f}|_{\mathcal{G}_B}$ is singular (a B-singular function), but \mathfrak{f} has large support outside \mathcal{G}_B



Our groupoid $\mathcal G$ will be a bundle of groups, i.e. $s(\gamma)=r(\gamma)$ for any $\gamma\in\mathcal G.$

Our groupoid $\mathcal G$ will be a bundle of groups, i.e. $s(\gamma)=r(\gamma)$ for any $\gamma\in\mathcal G$.

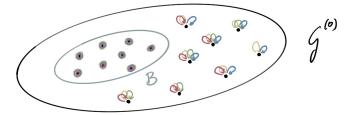
Suppose there exists a sequence $\{B_i\}_{i=1}^n$ of compact open bisections such that $B_i \cap B_j = B \subseteq \mathcal{G}^{(0)}$ for $i \neq j$.



Our groupoid $\mathcal G$ will be a bundle of groups, i.e. $s(\gamma)=r(\gamma)$ for any $\gamma\in\mathcal G$.

Suppose there exists a sequence $\{B_i\}_{i=1}^n$ of compact open bisections such that $B_i \cap B_j = B \subseteq \mathcal{G}^{(0)}$ for $i \neq j$.

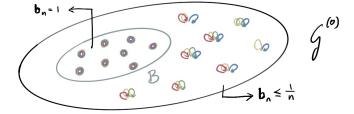
Define
$$\mathfrak{b}_n = \frac{1}{n} \sum_{i=1}^n \chi_{B_i}$$
.



Our groupoid \mathcal{G} will be a bundle of groups, i.e. $s(\gamma) = r(\gamma)$ for any $\gamma \in \mathcal{G}$.

Suppose there exists a sequence $\{B_i\}_{i=1}^n$ of compact open bisections such that $B_i \cap B_i = B \subseteq \mathcal{G}^{(0)}$ for $i \neq j$.

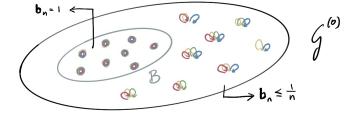
Define
$$\mathfrak{b}_n = \frac{1}{n} \sum_{i=1}^n \chi_{B_i}$$
.



Our groupoid \mathcal{G} will be a bundle of groups, i.e. $s(\gamma) = r(\gamma)$ for any $\gamma \in \mathcal{G}$.

Suppose there exists a sequence $\{B_i\}_{i=1}^n$ of compact open bisections such that $B_i \cap B_i = B \subseteq \mathcal{G}^{(0)}$ for $i \neq j$.

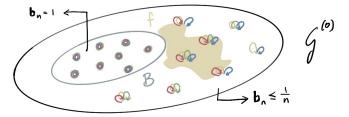
Define
$$\mathfrak{b}_n = \frac{1}{n} \sum_{i=1}^n \chi_{B_i} \xrightarrow{||\cdot||_{\infty}} \chi_B$$
.



Our groupoid \mathcal{G} will be a bundle of groups, i.e. $s(\gamma) = r(\gamma)$ for any $\gamma \in \mathcal{G}$.

Suppose there exists a sequence $\{B_i\}_{i=1}^n$ of compact open bisections such that $B_i \cap B_j = B \subseteq \mathcal{G}^{(0)}$ for $i \neq j$.

Define
$$\mathfrak{b}_n = \frac{1}{n} \sum_{i=1}^n \chi_{B_i} \xrightarrow{||\cdot||_{\infty}} \chi_B$$
.

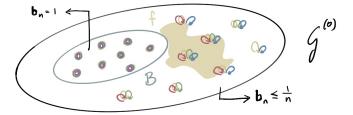


So
$$\mathfrak{f} * \mathfrak{b}_n \xrightarrow{||\cdot||_{\infty}} \mathfrak{f} * \chi_B$$
.

Our groupoid \mathcal{G} will be a bundle of groups, i.e. $s(\gamma) = r(\gamma)$ for any $\gamma \in \mathcal{G}$.

Suppose there exists a sequence $\{B_i\}_{i=1}^n$ of compact open bisections such that $B_i \cap B_i = B \subseteq \mathcal{G}^{(0)}$ for $i \neq j$.

Define
$$\mathfrak{b}_n = \frac{1}{n} \sum_{i=1}^n \chi_{B_i} \xrightarrow{||\cdot||_{\infty}} \chi_B$$
.



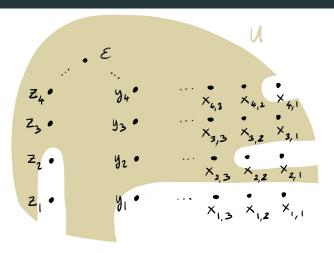
So
$$\mathfrak{f} * \mathfrak{b}_n \xrightarrow{||\cdot||_{\infty}} \mathfrak{f} * \chi_B$$
.

Convergence in C^* -norm comes at the cost of amenability.

The example: the definition of $\mathcal G$

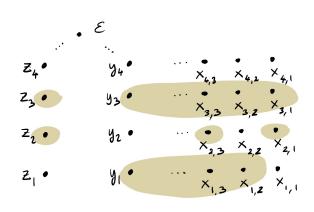
 $\mathcal{G}^{(0)}$: black dots above (where \cdots denotes convergence)

The example: the definition of $\mathcal G$



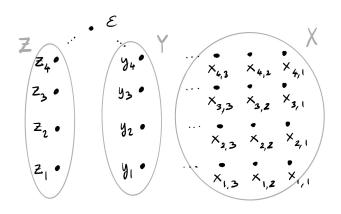
A 'typical' basic compact open neighborhood of $\boldsymbol{\epsilon}$

The example: the definition of \mathcal{G}



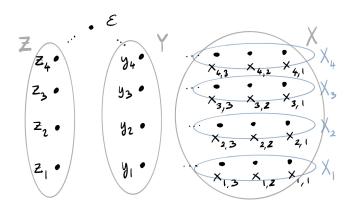
A 'typical' basic compact open set not containing $\boldsymbol{\epsilon}$

The example: the definition of $\mathcal G$



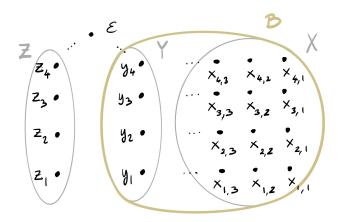
Notation: X, Y, Z

The example: the definition of $\mathcal G$



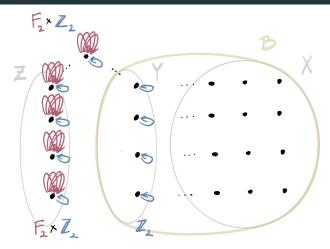
Notation: X, Y, Z

The example: the definition of \mathcal{G}



Notation: X, Y, Z and B: the set we 'scatter' to

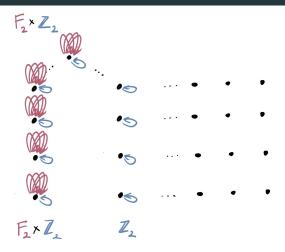
The example: the definition of ${\cal G}$



The groupoid:

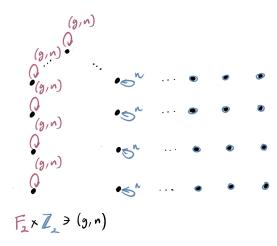
units in Z and ϵ have the isotropy group $F_2 \times \mathbb{Z}_2$ units in Y have the isotropy group \mathbb{Z}_2 units in X have trivial isotropy group

The example: the definition of $\mathcal G$



Basic compact open bisections:

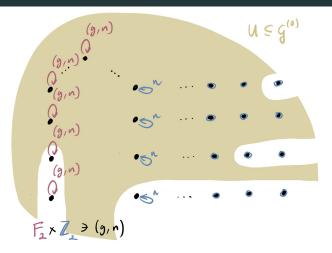
The example: the definition of \mathcal{G}



Basic compact open bisections:

Every pair $(g, n) \in F_2 \times \mathbb{Z}_2$ defines a compact open bisection

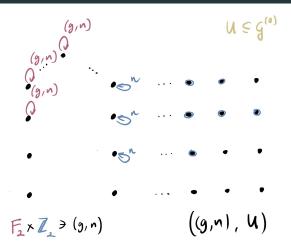
The example: the definition of \mathcal{G}



Basic compact open bisections:

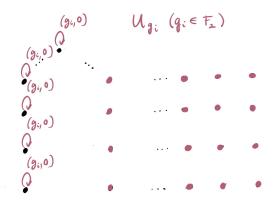
Every pair $(g, n) \in F_2 \times \mathbb{Z}_2$ defines a compact open bisection ...which we can further restrict to any basic compact open $U \subseteq \mathcal{G}^{(0)}$

The example: the definition of $\mathcal G$

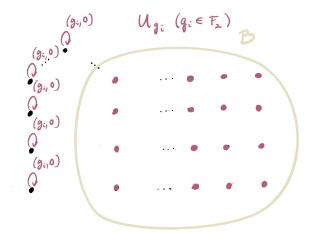


Basic compact open bisections:

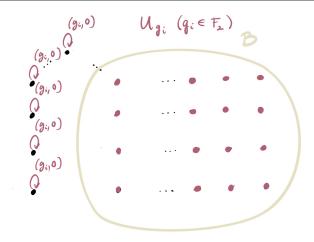
Every pair $(g, n) \in F_2 \times \mathbb{Z}_2$ defines a compact open bisection ...which we can further restrict to any basic compact open $U \subseteq \mathcal{G}^{(0)}$



Let $g_i \in F_2, i \in \mathbb{N}$ be pairwise different. Consider the compact open bisection $B_i = U_{g_i} = ((g_i, 0), \mathcal{G}^{(0)})$.

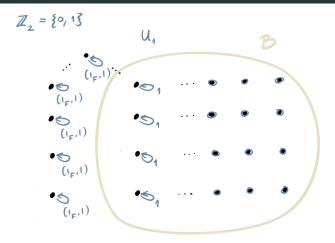


We 'scatter' to
$$B$$
: $\mathfrak{b}_n = \frac{1}{n} \sum_{i=1}^n \chi_{U_{\mathcal{E}_i}} \xrightarrow{||\cdot||_{\infty}} \chi_B$

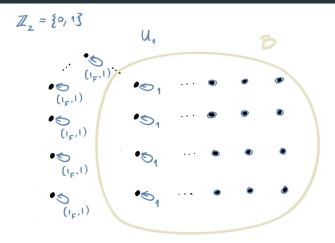


We 'scatter' to
$$B$$
: $\mathfrak{b}_n = \frac{1}{n} \sum_{i=1}^n \chi_{U_{\mathcal{E}_i}} \xrightarrow{||\cdot||_{\infty}} \chi_B$

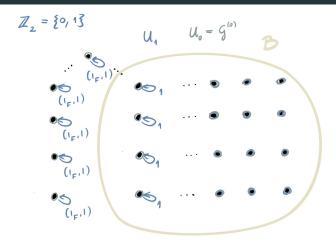
Convergence in norm is harder and requires a more careful choice of g_i s.



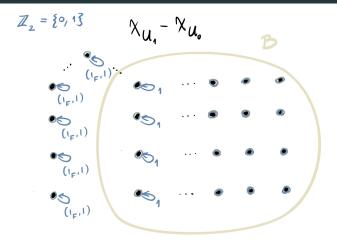
We create a B-singular function:



We create a B-singular function: Let $U_1=((1_F,1),\mathcal{G}^{(0)})$ compact open bisection Let $U_0=\mathcal{G}^{(0)}$ compact open bisection

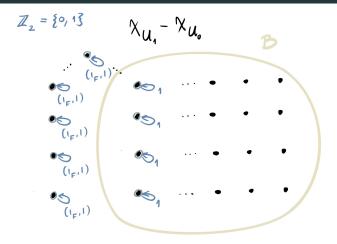


We create a B-singular function: Let $U_1=((1_F,1),\mathcal{G}^{(0)})$ compact open bisection Let $U_0=\mathcal{G}^{(0)}$ compact open bisection



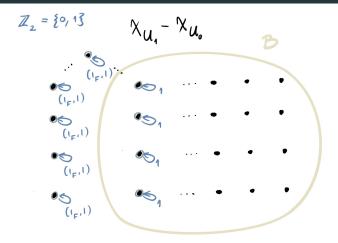
We create a *B*-singular function:

$$\mathfrak{f} = \chi_{U_1} - \chi_{U_0}$$



We create a *B*-singular function:

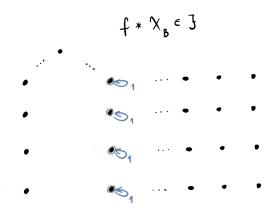
$$\mathfrak{f} = \chi_{U_1} - \chi_{U_0}$$



We create a B-singular function:

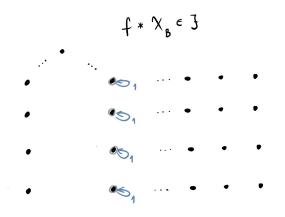
$$\mathfrak{f}=\chi_{U_1}-\chi_{U_0}$$

$$\mathrm{supp}(\mathfrak{f})|_{\mathcal{G}_B} \text{ contains no open sets } \Longrightarrow \mathfrak{f}*\chi_B \in J$$

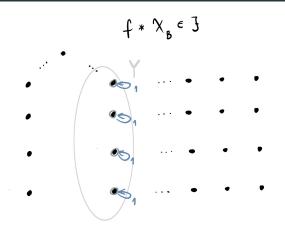


What remains is to show that $f * \chi_B \notin \overline{J_{alg}}$.

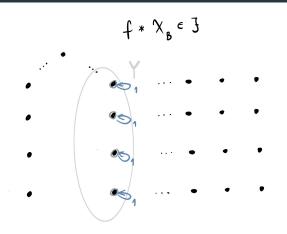
The example: $\mathfrak{f} * \chi_B \notin \overline{J_{alg}}$



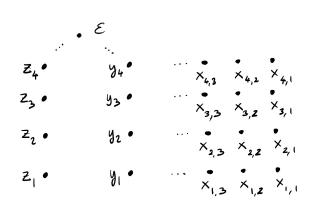
We show something stronger: $f * \chi_B \notin \overline{J_{alg}}^{\infty}$.



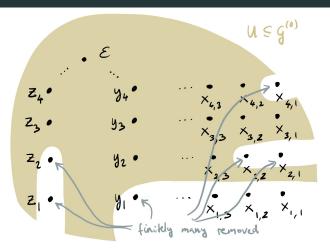
We show something stronger: $f * \chi_B \notin \overline{J_{alg}}^{\infty}$. Observe that if $||\mathfrak{f} - \mathfrak{g}||_{\infty} < 1$ then $Y \in \operatorname{supp} \mathfrak{g}$.



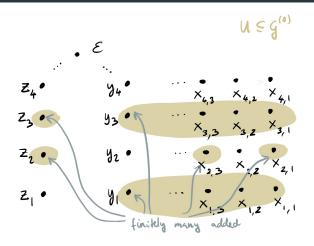
We show something stronger: $f * \chi_B \notin \overline{J_{alg}}^{\infty}$. Observe that if $||\mathfrak{f} - \mathfrak{g}||_{\infty} < 1$ then $Y \in \operatorname{supp} \mathfrak{g}$. Claim: if $Y \subseteq \operatorname{supp} \mathfrak{g}$ for $\mathfrak{g} \in \mathbb{C}\mathcal{G}$, then $\mathfrak{g} \notin J_{alg}$.



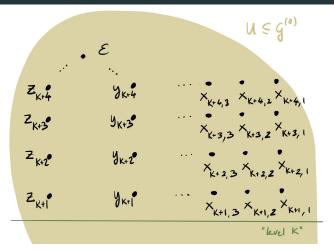
Let $\mathfrak{g}=\sum_{V\in F}c_V\chi_V$ where F is a finite set of compact open bisections, and suppose $Y\subseteq\operatorname{supp}\mathfrak{g}$.



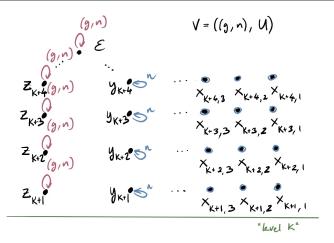
Any compact open bisection $V \in F$ is of the form ((g, n), U) where (1) U is either G^0 with finitely many sets $\{x_{i,j}\}, \{y_k\} \cup X_k, \{z_l\}$ 'removed'



Any compact open bisection $V \in F$ is of the form ((g, n), U) where (1) U is either G^0 with finitely many sets $\{x_{i,j}\}, \{y_k\} \cup X_k, \{z_l\}$ 'removed' (2) or U consists of finitely many sets $\{x_{i,j}\}, \{y_k\} \cup X_k, \{z_l\}$ 'added'



Since F is finite, there exists some $K \in \mathbb{N}$ larger than any 'added' or 'removed' indices



Since F is finite, there exists some $K \in \mathbb{N}$ larger than any 'added' or 'removed' indices

Above the 'Kth level', any $V \in F$ looks either empty (type (ii)) or a like a full bisection (type(i)).

The example: $\mathfrak{f} * \chi_B \notin \overline{J_{alg}}$

(9,n)
$$V = ((9,n), U)$$

$$Z_{k+4}(9,n) \qquad Y_{k+4} \qquad X_{k+4,2} \times X_{k+4,2} \times X_{k+4,1} \times X_{k+4,2} \times X_{k+4,1} \times X_{k+4,2} \times X_{k+4,1} \times X_{k+3,3} \times X_{k+3,2} \times X_{k+3,1} \times X_{k+2,3} \times X_{k+2,2} \times X_{k+2,2} \times X_{k+2,1} \times X_{k+1,3} \times X_{k+1,2} \times X_{k+1,2} \times X_{k+1,2} \times X_{k+1,1} \times X_{k+1,2} \times X_{k+1,2} \times X_{k+1,1} \times X_{k+1,2} \times X_{k+1,2} \times X_{k+1,1} \times X_{k+1,2} \times X_{$$

Recall:
$$\mathfrak{g} = \sum_{V \in F} c_V \chi_V$$
. Let $i \geq K$. Then

$$0 \neq \mathfrak{g}(y_i)$$

$$V = ((3, n), U)$$

$$V = ((3, n$$

Recall:
$$\mathfrak{g} = \sum_{V \in F} c_V \chi_V$$
. Let $i \geq K$. Then $0 \neq \mathfrak{g}(y_i) = \sum_{\substack{V = ((g,0),U) \\ g \in F_2,U \text{ type } (i)}} c_V = \sum_{\substack{g \in F_2 \\ U \text{ type } (i)}} \sum_{\substack{V = ((g,0),U) \\ U \text{ type } (i)}} c_V$

The example: $\mathfrak{f} * \chi_B \notin \overline{J_{alg}}$

$$V = ((g, n), U)$$

$$Z_{k+4}(g,n) \qquad Y_{k+4} \qquad X_{k+4,3} \times X_{k+4,2} \times X_{k+4,1} \times X_{k+4,1} \times X_{k+4,2} \times X_{k+4,1} \times X_{k+3,3} \times X_{k+3,2} \times X_{k+3,1} \times X_{k+3,3} \times X_{k+3,2} \times X_{k+3,1} \times X_{k+2,3} \times X_{k+2,2} \times X_{k+2,1} \times X_{k+2,3} \times X_{k+2,2} \times X_{k+2,1} \times X_{k+1,3} \times X_{k+1,2} \times X_{k+1,1} \times X_{k+1,2} \times X_{k+1,2}$$

Recall:
$$\mathfrak{g} = \sum_{V \in F} c_V \chi_V$$
. Let $i \geq K$. Then $0 \neq \mathfrak{g}(y_i) = \sum_{\substack{V = ((g,0),U) \\ g \in F_2,U \text{ type } (i)}} c_V = \sum_{g \in F_2} \sum_{\substack{V = ((g,0),U) \\ U \text{ type } (i)}} c_V = \sum_{g \in F_2} \mathfrak{g}((g,0),z_i)$

The example: $\mathfrak{f} * \chi_B \notin \overline{J_{alg}}$

$$(g,n) \qquad \forall = ((g,n), U)$$

$$Z_{k+4}(g,n) \qquad \forall k+4 \qquad \times_{k+4,2} \times_{k+4,1} \times_{k+4,1} \times_{k+4,1} \times_{k+3,3} \times_{k+3,2} \times_{k+3,1} \times_{k+2,3} \times_{k+2,2} \times_{k+2,1} \times_{k+2,3} \times_{k+2,2} \times_{k+2,1} \times_{k+2,3} \times_{k+2,2} \times_{k+2,1} \times_{k+1,3} \times_{k+1,2} \times_{k+1,1} \times_{k+1,2} \times_{k+1,2} \times_{k+1,1} \times_{k+1,2} \times_{k+1,1} \times_{k+1,2} \times_{k+1,1} \times_{k+1,2} \times_{k+1,1} \times_{k+1,2} \times_{k+1$$

 \implies there exists some g such that $\mathfrak{g}((g,0),z_i)\neq 0$

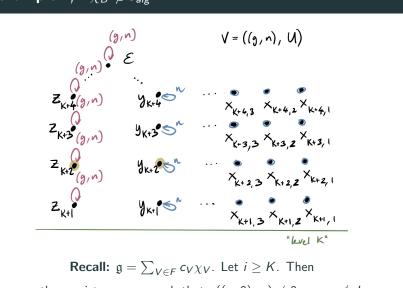
The example: $f * \chi_B \notin J_{alg}$

$$(g,n) \qquad \forall = ((g,n), U)$$

$$Z_{k+4}(g,n) \qquad \forall k+4 \qquad \times_{k+4,2} \times_{k+4,1} \times_{k+4,1} \times_{k+4,1} \times_{k+3,3} \times_{k+3,2} \times_{k+3,1} \times_{k+2,3} \times_{k+2,2} \times_{k+2,1} \times_{k+2,3} \times_{k+2,2} \times_{k+2,1} \times_{k+2,3} \times_{k+2,2} \times_{k+2,1} \times_{k+1,3} \times_{k+1,2} \times_{k+1,1} \times_{k+1,2} \times_{k+1,2} \times_{k+1,1} \times_{k+1,2} \times_{k+1,1} \times_{k+1,2} \times_{k+1,1} \times_{k+1,2} \times_{k+1,1} \times_{k+1,2} \times_{k+1$$

 \implies there exists some g such that $\mathfrak{g}((g,0),z_i)\neq 0 \implies \mathfrak{g}\notin J_{alg}$.

The example: $f * \chi_B \notin J_{alg}$

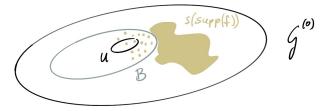


Recall:
$$\mathfrak{g} = \sum_{V \in F} c_V \chi_V$$
. Let $i \geq K$. Then \Longrightarrow there exists some g such that $\mathfrak{g}((g,0),z_i) \neq 0 \Longrightarrow \mathfrak{g} \notin J_{alg}$. This completes the proof that $\mathfrak{f} * \chi_B \notin \overline{J_{alg}}$.

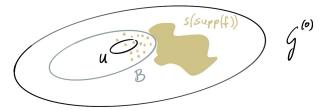
 We also have a minimal and effective counterexample: this is the groupoid of germs of an (inverse semigroup) action on an infinitary tree. The basic strategy is the same.

- We also have a minimal and effective counterexample: this is the groupoid of germs of an (inverse semigroup) action on an infinitary tree. The basic strategy is the same.
- Our strategy never gives $J_{alg} = 0$:

- We also have a minimal and effective counterexample: this is the groupoid of germs of an (inverse semigroup) action on an infinitary tree. The basic strategy is the same.
- Our strategy never gives J_{alg} = 0: there is always a compact open
 U ⊆ B intersecting s(supp f), so supp f * χ_U ∈ J_{alg}.



- We also have a minimal and effective counterexample: this is the groupoid of germs of an (inverse semigroup) action on an infinitary tree. The basic strategy is the same.
- Our strategy never gives J_{alg} = 0: there is always a compact open
 U ⊆ B intersecting s(supp f), so supp f * χ_U ∈ J_{alg}.



In particular, this is still open:

Question 1: Does $J_{alg} = 0$ imply J = 0?